Robust Multisensor MeMBer Filter for Multiple Extended-Target Tracking
نویسندگان
چکیده
منابع مشابه
Robust Extended Kalman Filter for Transient Tracking and Outlier Suppression
A new filter is proposed that achieves reliable state estimation in nonlinear systems with multiple equilibrium points. The latter may exhibit strong nonlinearity and sudden transient behavior triggered by either system process noise, or observation noise, or outliers. Our filter is able to output the correct qualitative state over time quickly and reliably when the system dynamics experience s...
متن کاملBox-Particle Labeled Multi-Bernoulli Filter for Multiple Extended Target Tracking
This paper focuses on real-time tracking of multiple extended targets in clutter based on labeled multiBernoulli filter. To address this problem, a novel approach is proposed within the recently presented box-particle framework. Unlike the traditional point-particle approach, the measurements of extended targets are modeled as interval measurements in this work, and the corresponding likelihood...
متن کاملRobust Real-Time Multiple Target Tracking
We propose a novel efficient algorithm for robust tracking of a fixed number of targets in real-time with low failure rate. The method is an instance of Sequential Importance Resampling filters approximating the posterior of complete target configurations as a mixture of Gaussians. Using predicted target positions by Kalman filters, data associations are sampled for each measurement sweep accor...
متن کاملClutter Removal in Sonar Image Target Tracking Using PHD Filter
In this paper we have presented a new procedure for sonar image target tracking using PHD filter besides K-means algorithm in high density clutter environment. We have presented K-means as data clustering technique in this paper to estimate the location of targets. Sonar images target tracking is a very good sample of high clutter environment. As can be seen, PHD filter because of its special f...
متن کاملA New Modified Particle Filter With Application in Target Tracking
The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2021
ISSN: 1563-5147,1024-123X
DOI: 10.1155/2021/9942365